Schlesinger Transformations for Bonnet Surfaces
نویسنده
چکیده
Bonnet surfaces, i.e. surfaces in Euclidean 3-space, which admits a one-parameter family of isometries preserving the mean curvature function, can be described in terms of solutions of some special Painlev e equations. The goal of this work is to use the well-known Schlesinger transformations for solutions of Painlev e VI equations to create new Bonnet surfaces from a known one.
منابع مشابه
Schlesinger transformations for elliptic isomonodromic deformations
Schlesinger transformations are discrete monodromy preserving symmetry transformations of the classical Schlesinger system. Generalizing well-known results from the Riemann sphere we construct these transformations for isomonodromic deformations on genus one Riemann surfaces. Their action on the system’s tau-function is computed and we obtain an explicit expression for the ratio of the old and ...
متن کاملSur les transformations de Schlesinger de la sixième équation de Painlevé
Les transformations de Schlesinger (TS) sont définies [14] comme des transformations discrètes qui préservent (à des signes près) la monodromie d’un système différentiel linéaire appelé système de Schlesinger. Si l’on choisit pour système de Schlesinger l’équation du second ordre possédant quatre points fuchsiens (“singuliers-réguliers”), de birapport x, et une singularité apparente d’affixe u,...
متن کاملSchlesinger transformations for algebraic Painlevé VI solutions
Various Schlesinger transformations can be combined with a direct pull-back of a hypergeometric 2×2 system to obtainRS 4 -pullback transformations to isomonodromic 2× 2 Fuchsian systems with 4 singularities. The corresponding Painlevé VI solutions are algebraic functions, possibly in different orbits under Okamoto transformations. This paper demonstrates a direct computation of Schlesinger tran...
متن کاملIsomonodromy Transformations of Linear Systems of Difference Equations
We introduce and study “isomonodromy” transformations of the matrix linear difference equation Y (z + 1) = A(z)Y (z) with polynomial (or rational) A(z). Our main result is a construction of an isomonodromy action of Zm(n+1)−1 on the space of coefficients A(z) (here m is the size of matrices and n is the degree of A(z)). The (birational) action of certain rank n subgroups can be described by dif...
متن کاملSchlesinger transformations and quantum R-matrices
Schlesinger transformations are discrete monodromy preserving symmetry transformations of a meromorphic connection which shift by integers the eigenvalues of its residues. We study Schlesinger transformations for twisted slN -valued connections on the torus. A universal construction is presented which gives the elementary two-point transformations in terms of Belavin’s elliptic quantum R-matrix...
متن کامل